
Multi-threaded art forum – discussing modules
Kyle J. Knoepfel
1 December 2017



• Quick review from last time

• State transitions and schedules

• Shared modules

• Replicated modules

• Next steps

For today

12/1/17 K. J. Knoepfel | MT forum2



https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_introduction

• We discussed motivations for a multi-threaded (MT) framework
• Largely based off of CMSSW’s design

– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent schedules (i.e. event loops) and 
(optionally) the maximum number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.

Last time

12/1/17 K. J. Knoepfel | MT forum3



https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_introduction

• We discussed motivations for a multi-threaded (MT) framework
• Largely based off of CMSSW’s design

– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.

Last time

12/1/17 K. J. Knoepfel | MT forum4

Currently	implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin 
R1

Begin
SR1

End
SR1

End 
R1

Begin 
R2

Begin
SR 1

1

2

4

5

3

.	.	.
.	.	.

Begin
Job

.	.	.



https://cdcvs.fnal.gov/redmine/projects/art/wiki/Art_multi-threading_forum_-_introduction

• We discussed motivations for a multi-threaded (MT) framework
• Largely based off of CMSSW’s design

– We use Intel’s Threading Building Blocks (TBB)
– Steps to be performed are factorized into tasks
– You can think of a call to your module’s “produce” function as performing a task

• Users specify the number of concurrent event loops and (optionally) the maximum 
number of threads that the process can use.

• Each loop processes one event at a time.
• Different modules will also be able to be run in parallel on the same event.

Last time

12/1/17 K. J. Knoepfel | MT forum5

Currently	implemented:

1 4 6 9

2 5

3

7 8

10

11

12

Begin 
R1

Begin
SR1

End
SR1

End 
R1

Begin 
R2

Begin
SR 1

1

2

4

5

3

.	.	.
.	.	.

Begin
Job

.	.	.
But what about the modules?  Today’s topic.



• art guarantees that any currently-existing modules (to within some interface 
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to choose 
the kind of module they use:
– Serialized module: use if the facilities you are using do not allow for concurrent execution 

and you must see all events
– Per-event loop module: for a configured module, one copy of that module is produced 

per event loop—each module copy sees one event at a time.  Use if moving to a fully 
concurrent module is unfeasible

– Fully concurrent module: module functions can be called concurrently without any data 
races

General statements—modules

12/1/17 K. J. Knoepfel | MT forum6

Presented last time.



• art guarantees that any currently-existing modules (to within some interface 
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to choose 
the kind of module they use:
– Serialized module: use if the facilities you are using do not allow for concurrent execution 

and you must see all events
– Per-event loop module: for a configured module, one copy of that module is produced 

per event loop—each module copy sees one event at a time.  Use if moving to a fully 
concurrent module is unfeasible

– Fully concurrent module: module functions can be called concurrently without any data 
races

General statements—modules

12/1/17 K. J. Knoepfel | MT forum7

Changed to something simpler…



• art guarantees that any currently-existing modules (to within some interface 
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to choose 
the kind of module they use:

– Shared module: sees all events—calls can be serialized or asynchronous.

– Replicated module: for a configured module, one copy of that module is created per 
schedule—each module copy sees one event at a time.  Use if moving to a concurrent, 
shared module is not feasible.

General statements—modules

12/1/17 K. J. Knoepfel | MT forum8



What you see and what you don’t see in art
or
State transitions and schedules

12/1/17 K. J. Knoepfel | MT forum9



Allowed transitions

12/1/17 K. J. Knoepfel | MT forum10

• art is designed to process a hierarchy of data-containment levels:
– 𝑹𝒖𝒏	 ⊃ 𝑺𝒖𝒃𝑹𝒖𝒏	 ⊃ 𝑬𝒗𝒆𝒏𝒕

• art users expect the framework to respect this hierarchy



Allowed transitions

12/1/17 K. J. Knoepfel | MT forum11

Run
(fragment)

SubRun
(fragment)

EventStart

Stop

• art is designed to process a hierarchy of data-containment levels:
– 𝑹𝒖𝒏	 ⊃ 𝑺𝒖𝒃𝑹𝒖𝒏	 ⊃ 𝑬𝒗𝒆𝒏𝒕

• art users expect the framework to respect this hierarchy
• The allowed transitions by the framework are thus:



Allowed transitions

12/1/17 K. J. Knoepfel | MT forum12

Run
(fragment)

SubRun
(fragment)

EventStart

Stop

• art is designed to process a hierarchy of data-containment levels:
– 𝑹𝒖𝒏	 ⊃ 𝑺𝒖𝒃𝑹𝒖𝒏	 ⊃ 𝑬𝒗𝒆𝒏𝒕

• art users expect the framework to respect this hierarchy
• The allowed transitions by the framework are thus:

These transitions are implicit to the user.



Processing a data-containment level (e.g. Event)

12/1/17 K. J. Knoepfel | MT forum13

• The order in which modules are executed for a Run, SubRun, or Event is 
determined by the path declarations in the configuration file.

physics: {

producers: {
    makeHits: {...}
    makeShowers: {...}

produceG4Steps: {...}
  }

analyzers: {
    plotHits: {...}
  }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}
Path declarations

Module declarations



Processing a data-containment level (e.g. Event)

12/1/17 K. J. Knoepfel | MT forum14

• The order in which modules are executed for a Run, SubRun, or Event is 
determined by the path declarations in the configuration file.

physics: {

producers: {
    makeHits: {...}
    makeShowers: {...}

produceG4Steps: {...}
  }

analyzers: {
    plotHits: {...}
  }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path



Processing a data-containment level (e.g. Event)

12/1/17 K. J. Knoepfel | MT forum15

• The order in which modules are executed for a Run, SubRun, or Event is 
determined by the path declarations in the configuration file.

physics: {

producers: {
    makeHits: {...}
    makeShowers: {...}

produceG4Steps: {...}
  }

analyzers: {
    plotHits: {...}
  }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger 
paths are executed is 
unspecified (current art).

• In MT art trigger paths will be 
executed simultaneously.

• Modules in a trigger path are 
executed in the order specified.

• End paths are always 
processed after all trigger paths.



Processing a data-containment level (e.g. Event)

12/1/17 K. J. Knoepfel | MT forum16

• The order in which modules are executed for a Run, SubRun, or Event is 
determined by the path declarations in the configuration file.

physics: {

producers: {
    makeHits: {...}
    makeShowers: {...}

produceG4Steps: {...}
  }

analyzers: {
    plotHits: {...}
  }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger 
paths are executed is 
unspecified (current art).

• In MT art trigger paths will be 
executed simultaneously.

• Modules in a trigger path are 
executed in the order specified.

• End paths are always 
processed after all trigger paths.

• It is the schedule that is responsible for calling modules in the correct order.
• Diagramming the interaction between the state transitions and the schedule is non-

trivial, especially in a multi-threaded environment.
• However, we will try to do this with three modules: m1, m2, and m3.



Time structure for calling modules
Single schedule (current art)

12/1/17 K. J. Knoepfel | MT forum17

1 2 3
Begin
SR1

End
SR1



12/1/17 K. J. Knoepfel | MT forum18

SubRun Event

m1

m2

m3

1 2 3
Begin
SR1

End
SR1Time structure for calling modules

Single schedule—current art



Shared modules
Modules shared across schedules

12/1/17 K. J. Knoepfel | MT forum19



12/1/17 K. J. Knoepfel | MT forum20

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1



12/1/17 K. J. Knoepfel | MT forum21

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1



12/1/17 K. J. Knoepfel | MT forum22

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

Data races are now possible.



12/1/17 K. J. Knoepfel | MT forum23

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

If the state of one of the 
modules is updated when 
simultaneously processing 
two events, there can be 
a data race.

What are some ways 
to handle this?

1

2



Use a “legacy” producer

12/1/17 K. J. Knoepfel | MT forum24

class HistMaker : public art::EDProducer {
public:
explicit HistMaker(Parameters const& p)

  {}

  void produce(Event& e) override {} // Called serially                                                                                                                             
};



Use a “legacy” producer

12/1/17 K. J. Knoepfel | MT forum25

class HistMaker : public art::EDProducer {
public:
explicit HistMaker(Parameters const& p)

  {}

  void produce(Event& e) override {} // Called serially                                                                                                                             
};

class HistMaker : public art::shared::Producer {
public:
explicit HistMaker(Parameters const& p)

  {}

  void produce(Event& e) override {} // Called serially                                                                                                                             
};

Is	synonymous	with…



12/1/17 K. J. Knoepfel | MT forum26

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

If two modules are processing
different events at the same
time, but they are using a
common resource, there 
can be a data race.1

2 How do we avoid such a data
race?



class Fitter : public art::shared::Producer {
public:
explicit Fitter(Parameters const& p)

  {
serialize<Event>("TCollection"); // Declare the common resource

  }

// Called serially wrt. other modules that use TCollection
  void produce(Event& e) override {}
};

Serialized module due to shared resource

12/1/17 K. J. Knoepfel | MT forum27

Suppose you want to call TCollection::(Set|Get)CurrentCollection
First step: please don’t.  This is only illustrating a thread-unsafe interface.



class Fitter : public art::shared::Producer {
public:
explicit Fitter(Parameters const& p)

  {
serialize<Event>("TCollection"); // Declare the common resource

  }

// Called serially wrt. other modules that use TCollection
  void produce(Event& e) override {}
};

Serialized module due to shared resource

12/1/17 K. J. Knoepfel | MT forum28



Serialized module due to shared resource

12/1/17 K. J. Knoepfel | MT forum29

class Fitter : public art::shared::Producer {
public:
explicit Fitter(Parameters const& p)

  {
serialize<Event>("TCollection"); // Declare the common resource

  }

// Called serially wrt. other modules that use TCollection
  void produce(Event& e) override {}
};



If you can guarantee no data races…

12/1/17 K. J. Knoepfel | MT forum30

class HitMaker : public art::shared::Producer {
public:
explicit HitMaker(Parameters const& p)

  {
async<Event>(); 

  }

  void produce(Event& e) override {} // Called asynchronously                                                                                                                             
};

This is how you opt in to parallelism.



What things could look like eventually

12/1/17 K. J. Knoepfel | MT forum31

class POTSumPlotter : public art::shared::Producer {
public:
explicit POTSumPlotter(Parameters const& p)

  {
serialize<SubRun>("TFileService");

    async<Event>();
  }

  void endSubRun(SubRun const& sr) override {} // Called serially                                                                                                                             
  void produce(Event& e) override {} // Called asynchronously                                                                                                                             
};



12/1/17 K. J. Knoepfel | MT forum32

Replicated modules
One module per schedule



12/1/17 K. J. Knoepfel | MT forum33

Replicated modules
One module per schedule

• Sometimes the easiest way to gain multi-threading benefits is to replicate modules 
across schedules—avoids data races from sharing a module.



12/1/17 K. J. Knoepfel | MT forum34

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1



12/1/17 K. J. Knoepfel | MT forum35

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.



12/1/17 K. J. Knoepfel | MT forum36

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

Consequence: each module
copy does not see all events.

Discussion topic: It may be 
necessary to provide a reduction
step where data members from the 
module copies can be combined.  



Replicated producer

12/1/17 K. J. Knoepfel | MT forum37

class Accumulator : public art::replicated::Producer {
public:
explicit Accumulator(Parameters const& p)

  {}

// Each module copy sees one event at a time
void produce(Event& e) override;

// Reduction interface to be discussed...
};



• We have taken care to design a system that:
– Is based off of previous CMSSW experience
– Is as simple as possible to “opt in” to and understand
– Can still be very flexible

• We are in the process of converting our integration tests to use multi-threaded 
execution, testing the system.

• There are still issues to be resolved, but the primary infrastructure for MT art is in 
place.

• With art 2.10, we intend to implement the MT-based task-scheduling, without 
introducing any multi-threading interface or behavior to the user.

Some closing remarks

12/1/17 K. J. Knoepfel | MT forum38



• We are considering allowing the insertion of data products via services during the 
post-read callbacks.  
– These callbacks are invoked in a protected manner—i.e. no data races
– Implementing can facilitate easier interaction with conditions information.

• Before the next meeting, we will be sending out the questions we want to discuss 
and answer:
– Is a reduction facility needed for replicated modules?
– Are there specific constraints your experiment has regarding processing sub-runs 

concurrently?
– What is the desired reproducibility/replayability behaviors for the 
RandomNumberGenerator service?

– Do you explicitly use TriggerResults objects?

Future steps

12/1/17 K. J. Knoepfel | MT forum39


